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1. INTRODUCTION. The estimation of a regression function

which is defined on an interval of the real line and is

nondecreasing (nonincreasing) but is not assumed to be of

a particular functional form has been considered in the

literature. Typically, an estimate is chosen which minimizes

a particular objective function subject to the appropriate

montonicity constraints. Brunk (1958, 1970) considered the

weighted least squares (t2 ) estimate and, in the later

reference, demonstrated its consistency and obtained its

asymptotic distribution. The large sample distribution results

have been extended by Leurgans (1979) and Wright (1981). Rates

of convergence for this estimator have been studied by Makowski

(1973) and Hanson, Pledger and Wright (1973).

The least absolute deviations (tl) estimate was intro-

duced by Robertson and Waltman (1968). Cryer, et al. (1972)

also considered this estimator, showing its consistency, studying

its rate of convergence and comparing it to the t2 estimator

by Monte Carlo techniques. Casady and Cryer (1976) have shown

that based on r observations, the almost sure rate of convergence

for the t 1 estimator is of order no larger than r - /, assuming

the underlying regression function satisfies a first order

Lipschitz condition. (This is the same rate obtained by

Makowski (1973) for the t2 estimator.) In this paper, the

asymptotic distribution of the t1 estimator is obtained and

assuming the regression function has a positive slope at a point,

the rate of convergence at that point is seen to be of order

r 1/3 The techniques presented here also apply to the weighted
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tI estimate provided the weighting function is positive,

continuous, bounded and bounded away from zero. As was

seen in the least squares case (cf. Wright (1981)), such

weights do not affect the limiting distribution and so we

only consider the case of equal weights. (For a description

of the weighted estimate see Robertson and Wright (1975).)

Leurgans (1979) has obtained the asymptotic distribution

of another estimator which might be appropriate if the errors

have heavier tails than the normal distribution. The estimate

she has considered is defined to be the slope of the greatest

convex minorant of a process determined by smoothly weighted

linear combinations of order statistics. For Leurgans'

estimator, the tl estimator and the t2 estimator the order of

the rate of convergence is the same and so the large sample

relative efficiencies are determined by the multiplicative

constants. These comparisons are not discussed here since they

are the same as those for the ordinary one sample location

problem.
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2. ASYMPTOTIC DISTRIBUTION OF THE i ESTIMATOR. Let p E (0,1)

and for each x e I, an interval of real numbers, let D(x) be

a probability distribution with pth quantile 6(x). For each

positive integer r, let xrl < x < . x be points in I
-l r2 < - rr

and let YrlYr2,..,rr be independent random variables with

Yrk distributed as D(X rk). The xrk are observation points and

the Yrk are observations. (For the results given here the

number of distinct observations must grow at least like some
positive constant times r. If the number of distinct observation

points is bounded, the work of Robertson and Waltman (1968)

gives the asymptotic distribution.) The estimator proposed

by Robertson and Waltman is defined at the observation points

and any monotone extension to I might be appropriate. One

such estimator is given by

(1) 6r x) = maxxr< x minx<x Q r ([Xrs ,Xrt])

where Qr (A) is the pth sample quantile, that is the [rp]th order

statistic, of the sample comprised of those Yrk for which

Xrk E A. This choice of er is constant on (Xrj lXrj) for

j = 2,...,r, however, examining the proofs we see that the

large sample results given here are valid for any nondecreasing

estimator which coincides with r at the observation points.r

If p = 1/2 the monotone L estimator is obtained.

The result that follows gives the asymptotic distribution

of r(x 0 ) with x 0 in the interior of I. As in the t2 case,

the rate of convergence of the estimator, 6r(x0), depends on

the rate of growth of the regression function at xO . We assume

that for some a and 8, both positive,



(2) 16(x) - )I =Ix - x0 10(1 + o(1)) as x x0 .

(Some implications of this assumption are discussed in

Wright (1981).) Since the observation points may be the

realization of a sequence of random variables each of which

has support in I, we state the conditions on them in terms of

their empirical distribution function,

F r(x) = card{k: Xrk S xl/r.

We assume that there is a distribution function F, which is

continuously differentiable in a neighborhood of x0 w~th

F'(x 0 ) > 0, for which

(3) SUPxIFr(X) - F(x)I = o(r-1 /(2o+l))

To apply the usual techniques for sample quantiles we make

the following uniformity assumption:

(4) sup{fP{Yrk- (xrk)<x}-p-nxI: l<k<r, r-l,2,...,Ix.p}=o(P) as p40.

Of course, (4) is satisfied if the Yrk - e(xrk) have a common

distribution function G, with pth quantile 0 and G'(0) = n.

THEOREM. Suppose that 6 is nondecreasing and satisfies (2);

that the observation points satisfy (3); and that the observations,

{Yrk } , are independent for each r and satisfy (4). Then

(5) {((+l)(rF'(x0 )n2 (pl-p))- )/ /(2+l( x0 )-e x 0 ))

converges in distribution to the slope at zero of the greatest

convex minorant of W(s) + Islo + l , where W is the two-sided

Wiener-Levy process with variance one per unit time.

Proof. The proof is similar to those given by Prakasa Rao

(1969) and Brunk (1970) except that we must approximate the

sample quantiles by averages before their techniques can be applied.
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As in the t2 case, we show that 6r(X) is asymptotically

equivalent to an estimator based on observations with

observation points in a sequence of intervals which converges

to x0. We make use of the modification of the arguments due

to Prakasa Rao (1969) and Brunk (1970) given in Wright (1981).

For an arbitrary c and r sufficiently large choose

a (r), au (r), Q(r) and au(r) so that

F(x 0 )-F(x0 -at(r)) = F(x 0 +a (r))-F(x) = 2cr-/(2 +1)

and

F(x0)-F(xo-Qe(r)) = F(x 0 +$t(r))-F(x0 ) = cr1/(2a+l)

Set

e* =max ](x_ s()f0mint[x Q (x x D
r Xrs ,x xrt0 +au(r)) r(rs rt

The first step in the proof is to show that r (x ) and e*r 0 r

are asymptotically equivalent by showing
A

(6) limc , lim supr P{er (x )9e*} = 0.
c-+Q r-- r0 r

Since the pth sample quantile is a Cauchy mean value function

(cf. Robertson and Wright (1975)), it satisfies the averaging

property used in the proof of the lemma in Wright (1981).

That proof can be modified to obtain (6), but the following

should be noted: with .r(A) = card{k: Xrk c A}, IA the

indicator of the event A and X (r) the sum over those k for

which Xrk E A,

{miny~ 0 Qr((Xo-$8 (r),y]) < O(Xo0- at(r))} C

U (Avl((xo-Q(r),y])>P-(vr((xo- (r),xo])-

y X0

- I(Xo)-(r),y]prk /r((Xo- a(r),Yl)}

(x0
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where Av'(A) = x r)( -Pr)/vr(A) andr A {Yrk(xO-5r))}rk r

Prk P{Yrk O(xO-Ot(r))}" Furthermore, if Xrk > x0 ,

Prk < P{Yrk-O(Xrk)<e(xO-8t(r))-e(xo)}, which using (4),

can be bounded by p + n(8(xo-LB(r))-e(xO ))(l+o(I)) where

o(I) represents quantity that does not depend on k and

converges to zero as r + -. If Xrk< x0, then

lirk.:P+n(e(x0-Ot/r))-e(xrk))+(e(x0-Bt(r))-e(x0))o(1)

and so (r)(xo_-(r),y]"rk/r(o-Ot(r),y))<p+(O(Xo- t(r))-B(Xo

n (xo_ (r),Xo-r ](e(xoat(r) )_e(xrk))/vr((XoBt(r),Xo]).

Next we approximate the pth quantiles by averages. Then,

since the max-min operation on averages is the same as the

slogcom (slope of the greatest convex minorant) of a cumulative sum

process, we only need to make slight modifications on the arguments

in the literature for such slogcom's. For arbitrary c with
0 < c < c, let yt(r) and y(r) be defined by y (r) =

min{xrk: F(X rk)-F(x 0) > er-1/( 2c+l)}-x0 and yt(r) =x

- max{xrk: F(xo)-F(xrk) > er-l/(2a+l). Note that

XrsE(X0_(t(r),x0OYt(r)]mixrtx0, O ux0 u(r)) r(rs rt]) r

<maxxrsc(x0-t (r),x0]minxrtC[x0+Yu(r),x0+0u(r))Qr([xrs'xrt]).

The large sample distribution for the lower and upper bounds in

(7) depend on c and as c - 0 they approach the same limit.



The discussion for the upper and lower bounds are similar and

so we only give the former. Denote the upper bound in (7) by

0?. To approximate the quantiles by averages, we show thatr

ra( lmXxrs E(xO-a I-(r),x 0],'XrtC[x 0 +Y u(r),x 0+a u(r))l

n(Q([Xrs Xrt) x - +0,Av"([X O,

where Av"(A) = j(P- )/(A). We appeal to the

following lemma which is a generalization of a result given

in Ghosh (1971):

Lemma. Consider arrays of random variables {A k: J=1,2,...,

Jn ,k=l,2,...,Knn=l,2 ,...} and {Bk: J=l,2,...,J nk=l,2,...,

Kn ,n=l,2,...}. If maxjk {A k is tight and for each 6 > 0 and

real x

(8) P{A k<x and Bn >x+6 for some J and k} 0
k- 0k-

and

(9) P{Ank>X+ and Bnk<x for some j and k) 0

as n - c, then maxjkIA B 0.

Proof. Because of the tightness assumption it suffices to

consider for arbitrary, positive r and M

P{IA k-Bjki > 2T and -M < An < M for some j and k}

<=iP{-M+(t-l)T<Ajkn-M+tl,Bnk M+(Z+l)T for some j and k)

+L__P(-M+(t-l)T<' <-M+tT,B n -M+(L-2)T for some j and k)
__l jk-

where L = [2M/T] + 1. The above sums can be made as small as

desired for fixed M and T.
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Set nlr =V r((--,xoca(r)),n 2 =r((- XoJ),n 3r

Vr((-,Xo+Yu (r))) and n = 4 Vr((-,Xo +cu (r))).

We apply the lemma with nr =

= = n r r a/(2c+l)Av"( +i
4r 3r. 2r lr' jk r r,n 2r-J '

Xr,nr+k]) and Bk = rct/(2a+l)(Qr([xrn 2rJ+ I , r,n 3 r+k ] )6(X 0

The proofs that (8) and (9) hold in this case are similar

and we only give the latter. Fix x and note that {Bk < x}

is contained in

{xr ,n 2 r - l~ r ,n 3r + k ]I { rt- e- x 0 )+ / n c  c l )

> [(J+k+n 3 -n 2 )P])

and {B r < x and Ark > x+6} is contained in

+l,xr,n3 r+k]Ur (x+6)(J+k+nr-nr)r-

Er ,n2r.-J~l r+]r 3r~r 2r

where U =  For the
{Yr e(x0 )+xr-c/(2a+l)/}I r{Yr 6(x 0  Fr

values of the index t in the last sum e(xO-cat(r))<e(xrt)<e(xo+cu(r))

and applying (2), both e(x0 )-e(xo-ct(r)) and e(x0 +a u(r))-(x)

can be written as a(2c/F'(x 0 ))ar-a/(
2 a+l)(1+o(l)). Hence,

applying (4), EUrt = xr -a/(2a+l) + o(r - a/(2a+l)) and since

n 3r-n2r>er 2a/(2a+l)( 1+o( 1 )) for r sufficiently large (10) is

contained in

,n2rJ+l,xr,n3r+k(UrEUr) 6r/(2a+l)/2}

With r fixed, define X, 1  r (U EU
rn 2r, rnr



91
l Uj+1  rn 2rj+l -EUrn2 r-J+l for J=l,2,...,JrXk+l, l

U -EU for k = 1,2,...,K and X 0
rn3r+k rn 3r +kr I

r

otherwise. So for sufficiently larger r, {B k<x and

Ar >x+6 for some j and k} is contained in
jk-

{maxk >E6r/2 /21 and applying

Theorem 6 of Gabriel (1977) the probability of the latter

event is bounded by

O(r 2 /(2 +l) (Jr+Kr+n3r-n2r)maxnlr+l<Z<n4r V(Ur)).

However, Jr+Kr+n 3r-n2r = 4cr 2 /(2a+l)(l+o(l)), V(Ur ) < JEUrtl)

and for nlr + 1 < nr, EUr was shown to be of the form

xr- /( 2a+l) + o/(2a+l) Hence, (8) holds. (The proof
r

of (9) is similar.) Now we must show that max. kJAjkI is

tight. Since IEI{Y <O(x )} is uniformly bounded for
rZ- 0

nlr + 1< < n4r and r = 1,2,..., it suffices to show that

max(I (x)} {YO£(x)I )/(j+k+n3r-n2 r)mj,kll[X rn rJ+l,X rn r+k] {Y rt-" } t 02

2r 3r

is tight. But this follows from an argument like the one above

which uses the result due to Gabriel (1977).

Now we consider the large sample distribution of el=r
-i 0]x minxrEx+u Av"([ ])

X mxrs E(X 0- al(r)'x Ex 0+ (r),x 0 +aLu(r)) r([rs'Xrt

Since the proof is similar to that given in Wright (1981) we

use the same notation. Let y < y < "'" < YrX be the distinct

observation points in (x 0-af(r), x0+au (r)); n(r,k) the number

of observations at Y; Y==In(rl ); rk (Yrk

" ' ' "k rI II II
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tr0 = 0, t = 2cDk,=in(r,t)/y for k=l,2,...,A; D=2(a(x0)B)-2 ;

22 ac 1/(2a+l)a2(x 0) = p(l-p)/n ; and B = {(a+l)(F'(x 0 )) W/8 (x0)
I

Define a process on [0,2cD] by U r(0) E 0,
kr

U (t 2cDXy=In(r,) k = 1,

and linear interpolation between the points trk. Let J(r) and

Z(r) satisfy YrJ(r) 0 < YrJ(r)+l and Yrt(r) = x0+Yu ( r ) "

In Chapter 1 of Barlow, et al. (1972) the relationship of

the max-min operator to the left hand slope of the greatest

convex minorant of the cumulative sum process is discussed.

Using this relationship and denoting the slope from the left

at x of the greatest convex minorant of the graph of X(s) for

s e S by slogcom (x){(s,X(s)): s c S), we see that

(11) n-slogcom(t rj(r)){(t,Ur(t)): 0<t<2cD}

-1
< 0" < T- slogcom(t ){(t,U (t)): 0<t<2cD}.

- r - rt(r) r

The argument starting on p. 446 of Wright (1981) shows that

r/a! B slogcom(t rj(r)){(tUr(t)): 0 < t < 2cD}

converges weakly to

V = slogcom(0){(s,W(s) + Isja+l): -cD < s < cD}.

However, it should be noted that since sup1 <t<XJLEI{lYr£O(x

- p - n(e(x 0) - 1(Xr ))I = o(r-a/(2a+l)), ra/(2a+l)B-lEUr(t)

can be written as the sum of fr () and a function which

converges to zero uniformly in t c [0,2cD] as r .

In considering the upper bound in (11), we first note

that maxl<<X(yr-Yrl) = o(r- 1 / ( 2 + l ) ) which implies that
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Vr((x 0 ,x0 +Yu(r)1) = er2a/(2a+l)( 1 +o(1 )). Since in the

arguments above we have seen that trj(r )  cD, t r(r) cD

+ cD/2. We appeal to the same weak convergence result as before

to show that

r ta/(2)+l)B(-slogcom(trZ(r)){t,Ur(t)): 0 < t < 2cD}

converges weakly to

V(c) = slogcom(cD/2){(s,W(s)+js a + l ): -cD < s < cD},

but we must show that with probability one the convex minorant

of W(s) + lsl + l on [cD, cD] has unique slope at cD/2.

However, if the convex minorant has different left and right

slopes at a fixed point t, then it agrees with W(s) 
+ IsI + l

at the point t. This implies that for h > 0, (W(t+h) + It+hl' + '

- W(t) - ItV')/h is bounded below by the right hand slope of

the convex minorant at t, but with probability one,

lim inf h0(W(t+h) - W(t))/h = - . So with probability one

the convex minorant has unique slope at t. Again, using the

same techniques V(L) convergoes weakly to V as F - 0.

We now show that Vr = rca/(2a+l)B(B*-(x 0 ) converges

weakly to V. Let rk be a subsequence and Vt a generalized

random variable, that is one that may be infinite with positive

probability, with P{V <x} {V'<x} for each real x at which
rk-

P{V'<xl is continuous. Since A (E) = ra/( 2 a+l)Be" Is bounded-- r r

above and below by sequences which converge weakly, Ar () is

tight for each e > 0. So for each c > 0, there is a further
subsequence rk(j) with A rk(j)() converging weakly, say, to

A(E). Let x be a real number in the continuity sets of V,V',V(c)

and A(E) for a sequence of c converging to zero. Since Ar ()
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and Br (E) = ra/( 2a+l)B(r,-O(x0)) are asymptotically equivalent

for each c > 0, for real x and c in the sequence mentioned

above we apply (7) and (11) to obtain

P{V'<x}>lim P{B <x} = P{A(e)<x} > P{V(e)<x}.
rk(j) ..

Letting c - 0, we see that P{V'<x} > P{V<x} for x in a dense

set. The reverse inequality can be obtained by considering

similar arguments for the lower bound on Vr . So V = VI in

distribution and this part of the proof is completed.

The only step remaining is to show that slogcom

(0){(s,W(s)+IsIa+l): -cD < s < cD} converges to slogcom

(0){(sW(s)+isl'): - < s < -}, but this is established in

Wright (1981).

Casady and Cryer (1976) have shown that with probability
one r)/(r(x)-O(x0))< k < - provided el m SUPr+ oo(r/loglog r er(

is Lipschitz of order 1. It would be interesting to determine

if the exponent could be increased to 1/3 when O'(x O ) > 0.

Of course, in this case, it can not be larger than 1/3.
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